时间序列分析?时间序列分析基本步骤-生活-

时间序列分析?时间序列分析基本步骤

牵着乌龟去散步 生活 1 0

大家好,关于时间序列分析很多朋友都还不太明白,今天小编就来为大家分享关于时间序列分析基本步骤的知识,希望对各位有所帮助!

本文目录

  1. 时间序列预测法的步骤
  2. 应用时间序列分析有哪几种 ***
  3. 常用的时间序列分析 *** 有哪些
  4. 时间序列分析法的组成要素
  5. 时间序列分析的步骤

一、时间序列预测法的步骤

ARIMA模型(移动平均自回归模型),其是最常见的时间序列预测分析 *** 。利用历史数据可以预测前来的情况。ARIMA模型可拆分为3项,分别是AR模型,I即差分,和MA模型。SPSSAU智能地找出更佳的AR模型,I即差分值和MA模型,并且最终给出更佳模型预测结果,SPSSAU智能找出更佳模型的原理在于利用AIC值最小这一规则,遍历出各种可能的模型组合进行模型构建,并且结合AIC最小这一规则,最终得到更佳模型。

当然,研究人员也可以自行设置AR模型,差分阶数和MA模型,即分别设置自回归阶数p,差分阶数d值和移动平均阶数q,然后进行模型构建。至于自回归阶数p,差分阶数d值和移动平均阶数q值应该设置多少合适,建议研究人员分别使用偏(自)相关图进行分析(SPSSAU也智能提供p值或q值建议),以及使用ADF检验分析得出合适的差分阶数d值(SPSSAU也智能提供更佳差分阶数d值建议)。

SPSSAU自动拟合出更佳的ARIMA模型,因此不设置3个参数(自回归阶数p,差分阶数d值和移动平均阶数q)。操作如下图:

SPSSAU共输出4个表格,第1个表格是拟合模型参数表格(即SPSSAU拟合出的更佳模型表格),如果研究人员自行设置了参数,则按照研究人员设置的模型进行构建。第2个表格是模型残差Q统计量检验表格,第3个表格是模型预测值(共往后12期的模型预测值),第4个表格是模型残差LM检验。

同时SPSSAU还输出模型拟合、预测的折线图,便于直观展示拟合效果和预测情况。如果研究者需要原始的残差或拟合值,可点击‘开始分析’按钮右侧‘保存残差和预测值’,系统会自动新生成2个标题用于标识残差和预测值。

上表格展示本次模型构建结果,包括模型参数和信息准则。本次模型构建时,SPSSAU自动构建出模型为:ARMA(2,1),其模型公式为:y(t)=69.536+1.984*y(t-1)-0.999*y(t-2)-0.720*ε(t-1)。如果研究人员希望自己进行模型构建并且进行优劣对比,可先记录下每个模型的AIC或BIC值,然后结合AIC或BIC值越小越好的原则,选择更优模型。

除此之外,SPSSAU还输出Q统计量值,AIRMA模型构建后一般要求模型残差为白噪声,即残差不存在自相关性,可通过Q统计量检验进行白噪声检验(原假设:残差是白噪声);比如Q6用于检验残差前6阶自相关系数是否满足白噪声,通常其对应p值大于0.1则说明满足白噪声检验(反之则说明不是白噪声),常见情况下可直接针对Q6进行分析即可;从Q统计量结果看,Q6的p值为1.000大于0.1,则在0.1的显著性水平下不能拒绝原假设,模型的残差是白噪声,模型基本满足要求。

二、应用时间序列分析有哪几种 ***

时间序列分析常用的 *** :趋势拟合法和平滑法。

1、趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的 *** 。包括线性拟合和非线性拟合。

线性拟合的使用场合为长期趋势呈现出线形特征的场合。参数估计 *** 为最小二乘估计。

时间序列分析?时间序列分析基本步骤-第1张图片-

非线性拟合的使用场合为长期趋势呈现出非线形特征的场合。其参数估计的思想是把能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计。实在不能转换成线性的,就用迭代法进行参数估计。

2、平滑法是进行趋势分析和预测时常用的一种 *** 。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律。

根据对系统进行观测得到的时间序列数据,用曲线拟合 *** 对系统进行客观的描述。

当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。

一般用ARMA模型拟合时间序列,预测该时间序列未来值。

根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

参考资料来源:百度百科-时间序列分析

三、常用的时间序列分析 *** 有哪些

时间序列分析常用的 *** :趋势拟合法和平滑法。

1、趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的 *** 。包括线性拟合和非线性拟合。

线性拟合的使用场合为长期趋势呈现出线形特征的场合。参数估计 *** 为最小二乘估计。

非线性拟合的使用场合为长期趋势呈现出非线形特征的场合。其参数估计的思想是把能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计。实在不能转换成线性的,就用迭代法进行参数估计。

2、平滑法是进行趋势分析和预测时常用的一种 *** 。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律。

根据对系统进行观测得到的时间序列数据,用曲线拟合 *** 对系统进行客观的描述。

当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。

一般用ARMA模型拟合时间序列,预测该时间序列未来值。

根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

参考资料来源:百度百科-时间序列分析

四、时间序列分析法的组成要素

1、一个时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

2、趋势:是时间序列在长时期内呈现出来的持续向上或持续向下的变动。

3、季节变动:是时间序列在一年内重复出现的周期性波动。它是诸如气候条件、生产条件、节假日或人们的风俗习惯等各种因素影响的结果。

4、循环波动:是时间序列呈现出得非固定长度的周期性变动。循环波动的周期可能会持续一段时间,但与趋势不同,它不是朝着单一方向的持续变动,而是涨落相同的交替波动。

5、不规则波动:是时间序列中除去趋势、季节变动和周期波动之后的随机波动。不规则波动通常总是夹杂在时间序列中,致使时间序列产生一种波浪形或震荡式的变动。只含有随机波动的序列也称为平稳序列。

五、时间序列分析的步骤

时间序列分析是一种用于预测未来值的统计技术,主要通过观察和研究数据随时间的变化趋势和规律。时间序列分析的步骤包括数据收集、数据可视化和相关性分析、模型选择和拟合。

首先,通过观测、调查、统计和抽样等 *** 获取被观测系统的时间序列动态数据。这是整个分析过程的基础,数据的质量和准确性对分析结果有着直接的影响。

将收集到的动态数据绘制成相关图,进行相关性分析,并求出自相关函数。相关图能够直观地展示出数据的变化趋势和周期,同时也能够发现跳点和拐点。

跳点是指与其他数据不一致的观测值,如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点,如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列。

在第二步的基础上,选择合适的随机模型进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。

对于短的或简单的时间序列,可以使用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可以使用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合ARMA模型等来进行拟合。

当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则需要先进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。

以上就是时间序列分析的基本步骤,每个步骤都有其独特的作用,缺一不可。通过这些步骤,我们可以对时间序列数据进行有效的分析和预测,为决策提供有力的支持。

时间序列分析和时间序列分析基本步骤的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!

标签: 时间序列 分析 步骤 基本

上一篇汕头181路公交车路线时间表 汕头181公交车多久发一趟

下一篇当前分类已是最新一篇

抱歉,评论功能暂时关闭!